Consiglio Nazionale delle Ricerche

Tipo di prodottoArticolo in rivista
TitoloOsteogenic differentiation of MSC through calcium signaling activation: transcriptomics and functional analysis
Anno di pubblicazione2016
Autore/iF. Viti, M. Landini, A. Mezzelani, L. Petecchia, L. Milanesi, S. Scaglione
Affiliazioni autoriCNR IBF; CNR ITB; CNR IEIIT
Autori CNR e affiliazioni
  • inglese
AbstractThe culture of progenitor mesenchymal stem cells (MSC) onto osteoconductive materials to induce a proper osteogenic differentiation and mineralized matrix regeneration represents a promising and widely diffused experimental approach for tissue-engineering (TE) applications in orthopaedics. Among modern biomaterials, calcium phosphates represent the best bone substitutes, due to their chemical features emulating the mineral phase of bone tissue. Although many studies on stem cells differentiation mechanisms have been performed involving calcium-based scaffolds, results often focus on highlighting production of in vitro bone matrix markers and in vivo tissue ingrowth, while information related to the biomolecular mechanisms involved in the early cellular calcium-mediated differentiation is not well elucidated yet. Genetic programs for osteogenesis have been just partially deciphered, and the description of the different molecules and pathways operative in these differentiations is far from complete, as well as the activity of calcium in this process. The present work aims to shed light on the involvement of extracellular calcium in MSC differentiation: a better understanding of the early stage osteogenic differentiation program of MSC seeded on calcium- based biomaterials is required in order to develop optimal strategies to promote osteogenesis through the use of new generation osteoconductive scaffolds. A wide spectrum of analysis has been performed on time-dependent series: gene expression profiles are obtained from samples (MSC seeded on calcium-based scaffolds), together with related microRNAs expression and in vivo functional validation. On this basis, and relying on literature knowledge, hypotheses are made on the biomolecular players activated by the biomaterial calcium-phosphate component. Interestingly, a key role of miR-138 was highlighted, whose inhibition markedly increases osteogenic differentiation in vitro and enhance ectopic bone formation in vivo. Moreover, there is evidence that Ca-P substrate triggers osteogenic differentiation through genes (SMAD and RAS family) that are typically regulated during dexamethasone (DEX) induced differentiation.
Lingua abstractinglese
Altro abstract-
Lingua altro abstract-
Pagine da-
Pagine a-
Pagine totali-
RivistaPloS one
Attiva dal 2006
Editore: Public Library of Science - San Francisco, CA
Paese di pubblicazione: Stati Uniti d'America
Lingua: inglese
ISSN: 1932-6203
Titolo chiave: PloS one
Titolo proprio: PloS one
Titolo abbreviato: PLoS ONE
Titoli alternativi:
  • Public Library of Science one
  • PLoS 1
Numero volume della rivista11
Fascicolo della rivista2
Verificato da refereeSì: Internazionale
Stato della pubblicazionePublished version
Indicizzazione (in banche dati controllate)-
Parole chiavebioinformatics, bioengineering, tissue engineering
Link (URL, URI)
Titolo parallelo-
Data di accettazione-
Note/Altre informazioni-
Strutture CNR
  • IBF — Istituto di biofisica
  • IEIIT — Istituto di elettronica e di ingegneria dell'informazione e delle telecomunicazioni
  • ITB — Istituto di tecnologie biomediche
Moduli CNR
    Progetti Europei-
    • Osteogenic Differentiation of MSC through Calcium Signaling Activation: Transcriptomics and Functional Analysis