Consiglio Nazionale delle Ricerche

Tipo di prodottoArticolo in rivista
TitoloOn Positivity of Polynomials: The Dilation Integral Method
Anno di pubblicazione2009
  • Elettronico
  • Cartaceo
Autore/iB. Barmish, P. S. Shcherbakov, S. Ross, F. Dabbene
Affiliazioni autoriB. Barmish : Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA P. S. Shcherbakov : Inst Control Sci, Moscow 117997, Russia S. Ross : Milwaukee Sch Engn, Dept Elect Engn & Comp Sci, Milwaukee, WI 53202 USA F. Dabbene : CNR-IEIIT
Autori CNR e affiliazioni
  • inglese
AbstractThe focal point of this paper is the well known problem of polynomial positivity over a given domain. More specifically, we consider a multivariate polynomial f(x) with parameter vector x restricted to a hypercube X subset of R-n. The objective is to determine if f (x) > 0 for all x is an element of X. Motivated by NP-Hardness considerations, we introduce the so-called dilation integral method. Using this method, a "softening" of this problem is described. That is, rather than insisting that f(x) be positive for all x is an element of X, we consider the notions of practical positivity and practical non-positivity. As explained in the paper, these notions involve the calculation of a quantity epsilon > 0 which serves as an upper bound on the percentage volume of violation in parameter space where f(x) <= 0. Whereas checking the polynomial positivity requirement may be computationally prohibitive, using our epsilon-softening and associated dilation integrals, computations are typically straightforward. One highlight of this paper is that we obtain a sequence of upper bounds epsilon(k) which are shown to be "sharp" in the sense that they converge to zero whenever the positivity requirement is satisfied. Since for fixed n, computational difficulties generally increase with k, this paper also focuses on results which reduce the size of the required k in order to achieve an acceptable percentage volume certification level. For large classes of problems, as the dimension of parameter space n grows, the required k value for acceptable percentage volume violation may be quite low. In fact, it is often the case that low volumes of violation can be achieved with values as low as k = 2.
Lingua abstractinglese
Altro abstract-
Lingua altro abstract-
Pagine da965
Pagine a978
Pagine totali-
RivistaIEEE transactions on automatic control (Print)
Attiva dal 1963
Editore: Institute of Electrical and Electronics Engineers, - New York, N.Y.
Paese di pubblicazione: Stati Uniti d'America
Lingua: inglese
ISSN: 0018-9286
Titolo chiave: IEEE transactions on automatic control (Print)
Titolo proprio: IEEE transactions on automatic control. (Print)
Titolo abbreviato: IEEE trans. automat. contr. (Print)
Titoli alternativi:
  • Transactions on automatic control (Print)
  • Automatic control (Print)
Numero volume della rivista54
Fascicolo della rivista5
Verificato da refereeSì: Internazionale
Stato della pubblicazione-
Indicizzazione (in banche dati controllate)
  • ISI Web of Science (WOS) (Codice:000266174100005)
Parole chiave-
Link (URL, URI)
Titolo parallelo-
Data di accettazione-
Note/Altre informazioni-
Strutture CNR
  • IEIIT — Istituto di elettronica e di ingegneria dell'informazione e delle telecomunicazioni
Moduli CNR
    Progetti Europei-
    • Published paper

    Dati storici
    I dati storici non sono modificabili, sono stati ereditati da altri sistemi (es. Gestione Istituti, PUMA, ...) e hanno solo valore storico.