Home |  English version |  Mappa |  Commenti |  Sondaggio |  Staff |  Contattaci Cerca nel sito  
Istituto di scienza e tecnologie dell'informazione "Alessandro Faedo"

Torna all'elenco Report e working Paper anno 2019

Report e working Paper

Tipo: Rapporto tecnico

Titolo: Tensor methods for the computation of MTTF in large systems of loosely interconnected components

Anno di pubblicazione: 2019

Formato: Elettronico

Autori: Masetti G.; Robol L.

Affiliazioni autori: CNR-ISTI, Pisa, Italy; University of Pisa, Pisa, Italy - CNR-ISTI, Pisa, Italy

Autori CNR:


Lingua: inglese

Sintesi: We are concerned with the computation of the mean-time-to-failure(MTTF) for a large system of loosely interconnected components, mod-eled as continuous time Markov chains. In particular, we show that split-ting the local and synchronization transitions of the smaller subsystemsallows to formulate an algorithm for the computation of the MTTF whichis proven to be linearly convergent. Then, we show how to modify themethod to make it quadratically convergent, thus overcoming the difficul-ties for problems with convergent rate close to1.In addition, it is shown that this decoupling of local and synchroniza-tion transitions allows to easily represent all the matrices and vectors in-volved in the method in the tensor-train (TT) format -- and we providenumerical evidence showing that this allows to treat large problems withup to billions of states -- which would otherwise be unfeasible.

Lingua sintesi: eng

Pagine totali: 18

Parole chiave:

  • Markov chain
  • CTMC
  • Stochastic modeling
  • Kronecker algebra
  • Tensor
  • Exponential sums
  • Matrix functions
  • Stochastic Automata Networks

URL: http://dcl.isti.cnr.it/tmp/tchrep-RtCv-63_CtAx_Ol19_jEN5.pdf

Strutture CNR:

Allegati: Tensor methods for the computation of MTTF in large systems of loosely interconnected components (application/pdf)
technical report

Torna indietro Richiedi modifiche Invia per email Stampa
Home Il CNR  |  I servizi News |   Eventi | Istituti |  Focus