Home |  English version |  Mappa |  Commenti |  Sondaggio |  Staff |  Contattaci Cerca nel sito  
Istituto sull'inquinamento atmosferico

Torna all'elenco Contributi in rivista anno 2017

Contributo in rivista

Tipo: Articolo in rivista

Titolo: A neural network ensemble downscaling system (SIBILLA) for seasonal forecasts over Italy: winter case studies

Anno di pubblicazione: 2017

Autori: Amendola, Stefano; Maimone, Filippo; Pasini, Antonello; Ciciulla, Fabrizio; Pelino, Vinicio

Affiliazioni autori: Universita degli Studi di Roma Tor Vergata; Italian Air Force; CNR-Institute of Atmospheric Pollution Research, Rome; CNMCA; Sysman Progetti Servizi srl

Autori CNR:

  • ANTONELLO PASINI

Lingua: inglese

Abstract: A novel statistical downscaling system for seasonal predictions is presented, based on an ensemble of neural networks with Bayesian regularization. The system SIBILLA (Statistical Integrated Bayesian Information system for Large to Local area Analysis) is able to take multiple predictor fields and/or time series as inputs. Gridded fields are compressed using empirical orthogonal functions, and a canonical correlation analysis is performed between predictors and each predictand. The first canonical variates are used as effective predictors in a neural network ensemble system. Final outputs for each parameter are expressed as a probability distribution for each station/grid point in the space of observations, as a result of the convolution of Gaussian mixtures. A first example of application in the Italian area is presented. An overall increase in skill score performances with respect to European Centre for Medium-Range Weather Forecasts (ECMWF) System 4 direct model output for the period 1981-2010 was found, even if probably not as high as desirable in a fully operational system.

Lingua abstract: inglese

Pagine da: 157

Pagine a: 166

Rivista:

Meteorological applications Royal Meteorological Society,
Paese di pubblicazione: Regno Unito
Lingua: inglese
ISSN: 1350-4827

Numero volume: 24

Numero fascicolo: 1

DOI: 10.1002/met.1615

Referee: Sė: Internazionale

Stato della pubblicazione: Published version

Indicizzato da: Scopus [2-s2.0-85008461970]

Parole chiave:

  • Bayesian regularization
  • empirical statistical downscaling
  • neural network
  • seasonal forecast

URL: http://www.scopus.com/record/display.url?eid=2-s2.0-85008461970&origin=inward

Data di accettazione: 06/07/2016

Strutture CNR:

 
Torna indietro Richiedi modifiche Invia per email Stampa
Home Il CNR  |  I servizi News |   Eventi | Istituti |  Focus